Nachweis

Wärmedurchgangskoeffizient

Prüfbericht Nr. 11-002409-PR09

(PB-C01-06-de-01)

HATIPOGLU PLASTIK YAPI Auftraggeber ELEMANLARI SAN. TIC. A.S.

Organize Sanayi Bölgesi

17. Cad. No: 33 26110 Eskisehir

Türkei

Produkt

Aussentüre einflügelig (Paneeltüre)

Bezeichnung

Thermo-03

Leistungsrelevante Produktdetails

Außenmaß (B x H) im mm 1000 x 2100; Profilkombinationen; Ansichtsbreite B in mm FR-BR: 145, FR-Schwelle: 120; Flügelrahmen; Artikel-Nummer PR7104; Blendrahmen; Artikel-Nummer PRDR01; Schwelle; Artikel-Nummer AK0690; Türpaneel; Aufbau in mm 1,5 / 21 / 1,5; Decklage PVC-hart; Dämmstoff; Material EPS "Stropor Burpor"; Wärmeleitfähigkeit in W/(m K) 0,044; Verglasung; Wärmedurchgangskoeffizient Ug in W/(m²K) 2,9 (Angabe des Auftraggebers); Aufbau in mm 4 / 12 / 4; Abstandhalter; Material Aluminiumlegierung; Breite in mm 11; Dicke in mm 10; Verglasung unten; Sichtbare Größe (B x H) in mm 2 x 154 x 399; Verglasung oben; Fläche in m² 0,103; Umfang in mm 1420; Sprosse; Material Aluminiumlegierung; Länge in mm 3 x 127

Besonderheiten

Abstandhalter nach EN ISO 10077-2 Anhang D (Angabe des Auftraggebers)

Ergebnis

Berechnung des Wärmedurchgangskoeffizienten nach ISO 10077-1:2006-09

 $U_{\rm D} = 1.8 \text{ W/(m}^2\text{K})$

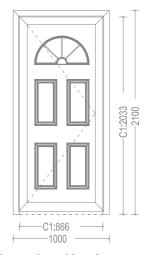
ift Rosenheim 12. April 2012

Manuel Demel, Dipl.-Ing. (FH) Stv. Prüfstellenleiter Bauphysik

Manuel Dame

Sebastian Wassermann, Dipl.-Ing. (FH) Stv. Laborleiter

Rechnergestützte Simulation


Grundlagen *)

EN 14351-1:2006+A1:2010 EN ISO 10077-1:2006-09

ift-Prüfbericht 11-002409-PR08 (PB-K20-06-de-01)

*) und entsprechende nationale Fassungen

Darstellung

Verwendungshinweise

Die ermittelten Ergebnisse können vom Hersteller als Grundlage für den herstellereigenen zusammenfassenden ITT-Bericht verwendet werden. Die Festlegungen der geltenden Produktnorm sind zu beachten.

Gültigkeit

Die genannten Daten und Ergebnisse beziehen sich ausschließlich auf den geprüften und beschriebenen Probekörper.

Diese Prüfung ermöglicht keine Aussage über weitere leistungsund qualitätsbestimmende Eigenschaften der vorliegenden Konstruktion.

Veröffentlichungshinweise

Es gilt das "Merkblatt zur Benutzung von ift-

Prüfdokumentationen". Das Deckblatt kann als Kurzfassung verwendet werden.

Der Nachweis umfasst insgesamt 5 Seiten und Anlagen (3 Seiten).

Nachweis Blatt 2 von 6

Berechnung des Wärmedurchgangskoeffizienten

Prüfbericht Nr. 11-002409-PR09 (PB-C01-06-de-01) vom 12. April 2012 Auftraggeber: HATIPOGLU PLASTIK YAPI ELEMANLARI SAN. TIC. A.S.,

26110 Eskisehir (Türkei)

1 Gegenstand

1.1 Probekörperbeschreibung

Aussentüre einflügelig (Paneeltüre)

Hersteller HATIPOGLU PLASTIK YAPI,

ELEMANLARI SAN. TIC. A.S. - Eskisehir

Systembezeichnung Thermo-03 Außenmaß (B x H) im mm 1000 x 2100

Öffnungsart dreh

Öffnungsrichtung nach innen

Falzausbildung

Falzausbildung: Einfachfalz

Dichtunssystem: oben / seitlich: 1 x Anschlagdichtung,

1 x Überschlagdichtung

unten: 1 x Überschlagdichtung

1 x Mitteldichtung

Profilkombinationen

Material Polyvinylchlorid (PVC-hart)

Ansichtsbreite B in mm FR-BR: 145

FR-Schwelle: 120

Flügelrahmen

Artikel-Nummer PR7104
Profilquerschnitt, Breite in mm 108
Profilquerschnitt, Dicke in mm 71

Blendrahmen

Artikel-Nummer PRDR01

Profilquerschnitt, Breite in mm 67 Profilquerschnitt, Dicke in mm 71

Schwelle

Artikel-Nummer AK0690

Material Aluminiumlegierung

Profilquerschnitt, Breite in mm 22 Profilquerschnitt, Dicke in mm 59

Türpaneel

Gesamtdicke in mm 24

Aufbau in mm 1,5 / 21 / 1,5

Decklage Polyvinylchlorid (PVC-hart)

Sichtbare Größe (B x H) 710 x 1835

Nachweis Blatt 3 von 6

Berechnung des Wärmedurchgangskoeffizienten

Prüfbericht Nr. 11-002409-PR09 (PB-C01-06-de-01) vom 12. April 2012 Auftraggeber: HATIPOGLU PLASTIK YAPI ELEMANLARI SAN. TIC. A.S.,

26110 Eskisehir (Türkei)

Dämmstoff

Material Expandierter Polystyrol-Hartschaum (EPS)

Lieferbezeichnung Stropor Burpor

Wärmeleitfähigkeit in W/(m K) 0,044

Verglasung

Wärmedurchgangskoeffizient U_a

in $W/(m^2K)$

2,9 (Angabe Auftraggeber)

Gesamtdicke in mm 20

Aufbau in mm 4 / 12 / 4

Abstandhalter Nach EN ISO 10077-2 Anhang D

Material Aluminiumlegierung

Profilquerschnitt, Dicke in mm 11
Profilquerschnitt, Breite in mm 10
Materialdicke in mm 0,5

Verglasung unten

Sichtbare Größe (B x H) in mm 2 x 154 x 399

Verglasung oben

Fläche in m² 0,10 Umfang in mm 1420

Sprosse

Material Aluminiumlegierung

Profilquerschnitt, Breite in mm 18 Profilquerschnitt, Dicke in mm 12

Länge in mm 3 x 127

Die Beschreibung basiert auf den Angaben des Auftraggebers und der Überprüfung des Probekörpers im **ift**. (Artikelbezeichnungen/-nummern sowie Materialangaben sind Angaben des Auftraggebers, wenn nicht als "**ift**-geprüft" ausgewiesen.)

Probekörperdarstellung/en sind in der Anlage "Darstellung Produkt/Probekörper" dokumentiert.

Die konstruktiven Details wurden ausschließlich hinsichtlich der nachzuweisenden Merkmale / Leistung überprüft; Zeichnungen basieren auf unveränderten Unterlagen des Auftraggebers, wenn nicht anders ausgewiesen.

1.2 Probennahme

Dem ift liegen folgende Angaben zur Probennahme vor:

Probennehmer: HATIPOGLU PLASTIK YAPI

ELEMANLARI SAN. TIC. A.S., 26110 Eskisehir (Türkei)

Datum: 22.02.2012

Nachweis: Ein Probennahmebericht liegt dem ift nicht vor.

ift-Pk-Nummer: 11-002409-PK09

Nachweis Blatt 4 von 6

Berechnung des Wärmedurchgangskoeffizienten

Prüfbericht Nr. 11-002409-PR09 (PB-C01-06-de-01) vom 12. April 2012 Auftraggeber: HATIPOGLU PLASTIK YAPI ELEMANLARI SAN. TIC. A.S.,

26110 Eskisehir (Türkei)

2 Durchführung

2.1 Grundlagendokumente *) der Verfahren

EN ISO 10077-1:2006-09

Thermal performance of windows, doors and shutters - Calculation of thermal transmittance - Part 1 - Simplified method

EN 14351-1:2006+A1:2010

Windows and doors - Product standard, performance characteristics - Part 1: Windows and external pedestrian doorsets without resistance to fire and/or smoke leakage characteristics

ift-Prüfbericht 11-002409-PR08 (PB-K20-06-de-01)

*) und die entsprechenden nationalen Fassungen, z.B. DIN EN

2.2 Verfahrenskurzbeschreibung

Berechnung des Wärmedurchgangskoeffizienten UD

Der Wärmedurchgangskoeffizient U_D einer Türe wird berechnet über die Aufsummierung der Produkte der einzelnen Flächen- bzw. Längenabmessungen und der zugehörigen Wärmedurchgangskoeffizienten bzw. längenbezogenen Wärmedurchgangskoeffizienten bezogen auf die Gesamtfläche der Türe.

Nachweis Blatt 5 von 6

Berechnung des Wärmedurchgangskoeffizienten

Prüfbericht Nr. 11-002409-PR09 (PB-C01-06-de-01) vom 12. April 2012 Auftraggeber: HATIPOGLU PLASTIK YAPI ELEMANLARI SAN. TIC. A.S.,

26110 Eskisehir (Türkei)

3 Einzelergebnisse

Berechnung des Wärmedurchgangskoeffizienten

Projekt-Nr. 11-002409-PR09 Vorgang Nr. 11-002409

Grundlagen der Prüfung EN ISO 10077-1:2006-09

Thermal performance of windows, doors and shutters - Calculation of thermal transmittance

Verwendete Prüfmittel ift-Berechnungsprogramm

Probekörper Plattentüre einflüglig mit Lichtausschnitten

 Probekörpernummer
 11-002409-PK09

 Prüfdatum
 15.03.2012

Verantwortlicher Prüfer Sebastian Wassermann

Prüfer Maurice Mayer

Informationen zum Prüfaufbau / Prüfverfahren

Prüfverfahren Es gibt keine Abweichungen zum Prüfverfahren gemäß Norm/Grundlage.

Berechnung des Wärmedurchgangskoeffizienten

Prüfbericht Nr. 11-002409-PR09 (PB-C01-06-de-01) vom 12. April 2012 Auftraggeber: HATIPOGLU PLASTIK YAPI ELEMANLARI SAN. TIC. A.S.,

26110 Eskisehir (Türkei)

Ermittlung des Wärmedurchgangskoeffizienten der Tür $U_{\,\mathrm{D}}$

Der Wärmedurchgangskoeffizient der Tür ergibt sich aus:

$$U_{D} = \frac{A_{f} \cdot U_{f} + A_{g} \cdot U_{g} + l_{g} \cdot \Psi_{g} + A_{P} \cdot U_{P} + l_{P} \cdot \Psi_{P} + l_{SPR} \cdot \Psi_{SPR}}{A_{D}}$$

	Definition	Einheit
A_{f}	Fläche Rahmenprofil	m²
U_{f}	Wärmedurchgangskoeffizient Rahmenprofil	W/(m ² K)
$l_{\rm g}$	Länge Glasrand	m
$\psi_{\rm g}$	längenbezogener Wärmedurchgangskoeffizient des Randverbundes	W/(mK)
$A_{\rm g}$	Fläche Verglasung	m²
U_{g}	Wärmedurchgangskoeffizient Verglasung	W/(m ² K)
l_{p}	Länge Paneelrand	m
ψ_{p}	längenbezogener Wärmedurchgangskoeffizient des Türpaneels	W/(mK)
A _p	Fläche Türpaneel	m ²
U_{p}	Wärmedurchgangskoeffizient Türpaneel	W/(m ² K)
$l_{ m SPR}$	Länge Sprossenprofil	m
₩ SPR	längenbezogener Wärmedurchgangskoeffizient des Sprossenprofils	W/(mK)
b_{D}	Türbreite	mm
h_{D}	Türhöhe	mm
$A_{ m D}$	Türfläche	m²
$l_{\rm D}$	Türumfang	m

Abmessung	b_{D}	h_{D}	A_{D}	Rahmenanteil
	1000	2100	2,1	38%

Profilkombinationen		n	Quelle
		U_{f}	Quelle
Flügelrahmen-Blendrahmen oben	0,145	1,4	ift-Prüfbericht 11-002409-PR08 (PB-K20-06-de-01)
Flügelrahmen-Blendrahmen seitlich	0,532	1,4	ift-Prüfbericht 11-002409-PR08 (PB-K20-06-de-01)
Flügelrahmen-Schwelle	0,120	2,5	ift-Prüfbericht 11-002409-PR08 (PB-K20-06-de-01)

Verglasung	$l_{\rm g}$	Ψ _g	$A_{ m g}$	U_{g}	Quelle
	2,212	0,071			Abstandhalter nach EN ISO 10077-2 Anhang D (Angabe des Auftraggebers)
Untere Verglasungselemente			0,123	2,9	Angabe des Auftraggebers
	1,422	0,085			Abstandhalter nach EN ISO 10077-2 Anhang D (Angabe des Auftraggebers)
Oberes Verglasungselement		0,103	2,9	Angabe des Auftraggebers	

Paneel	l_{p}	Ψ_{p}	A_{p}	$U_{\mathfrak{p}}$	Quelle
	5,090 0,002 i		ift-Prüfbericht 11-002409-PR08 (PB-K20-06-de-01)		
Paneel 1,5 / 21 / 1,5			1,077	1,50	ift-Prüfbericht 11-002409-PR08 (PB-K20-06-de-01)

Sprosse	$l_{ m SPR}$	$\Psi_{ ext{SPR}}$	Quelle
Sprosse in oberem Verglasungselement	0,381	0,11	ift-Prüfbericht 11-002409-PR08 (PB-K20-06-de-01)

Prüfergebnis

Errechneter Wärmedurchgangskoeffizient:

 $U_{\rm D} = 1.8 \text{ W/(m}^2\text{K)}$

Nachweis

Berechnung des Wärmedurchgangskoeffizienten

Prüfbericht Nr. 11-002409-PR09 (PB-C01-06-de-01) vom 12. April 2012

Auftraggeber: HATIPOGLU PLASTIK YAPI

ELEMANLARI SAN. TIC. A.S., 26110 Eskisehir (Türkei)

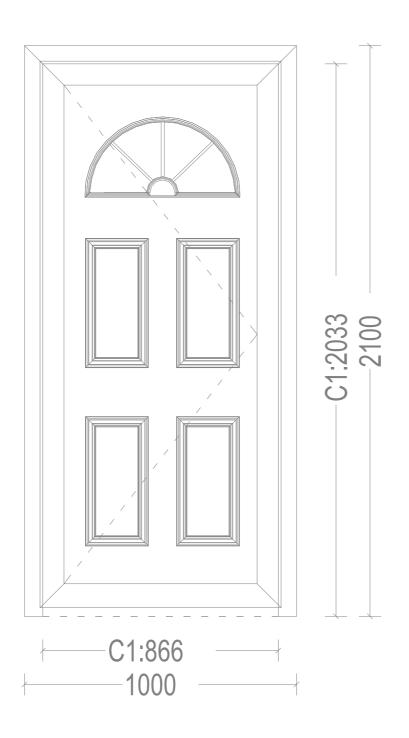


Bild 1: Ansicht des Probekörpers

Berechnung des Wärmedurchgangskoeffizienten

Prüfbericht Nr. 11-002409-PR09 (PB-C01-06-de-01) vom 12. April 2012

Auftraggeber: HATIPOGLU PLASTIK YAPI

ELEMANLARI SAN. TIC. A.S., 26110 Eskisehir (Türkei)

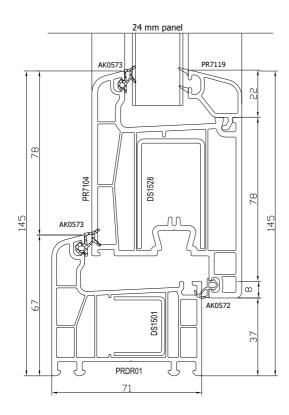


Bild 2: Querschnittsdarstellung seitlicher/oberer Profilquerschnitt

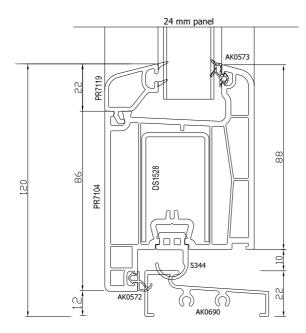


Bild 3: Querschnittsdarstellung unterer Profilquerschnitt

Berechnung des Wärmedurchgangskoeffizienten

Nachweis

Prüfbericht Nr. 11-002409-PR09 (PB-C01-06-de-01) vom 12. April 2012

Auftraggeber: HATIPOGLU PLASTIK YAPI

ELEMANLARI SAN. TIC. A.S., 26110 Eskisehir (Türkei)

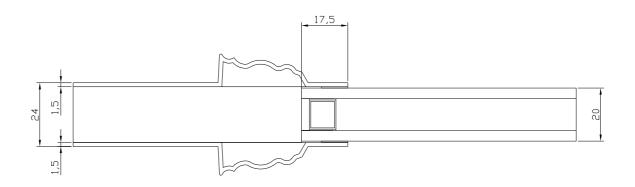


Bild 4: Querschnittsdarstellung Übergang Paneel - unteres Verglasungselement

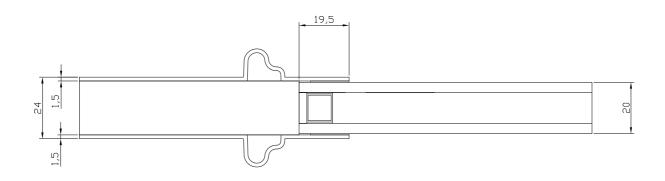


Bild 5: Querschnittsdarstellung Übergang Paneel - oberes Verglasungselement

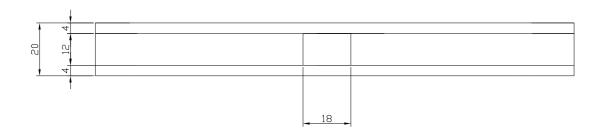


Bild 6: Querschnittsdarstellung Verglasungssprosse in oberem Verglasungselement